
The math behind 42’s Philosophers

by mofrim aka fmaurer

Abstract

This document is about the math behind 42’s Philosophers Project. This is how i came
to understand it while i was working on the project. So there might still be something left or
even wrong.

The Basics

Let

tdie := time to die,

teat := time to eat,

tsleep := time to sleep,

n := number of philosophers aka philno.

Most evidently philosophers must die if

tdie ≤ teat or tdie ≤ tsleep.

The normal way of philosopher life goes like:

eat→ sleep→ think→ repeat.

So it is also immediately clear that philosophers will die if

tdie ≤ teat+ tsleep,

because they will always at least have to eat and sleep until they can start their next meal. So
if a philo starts at time 0 eats for teat, sleeps for tsleep, even skips thinking completely, his time
consumption since last meal start will be

teat+ tsleep = tdie ⇒ �.

So we have the first contraint rule on the possible combinations of parameters for the Philoso-
phers Problem:

Rule i:
tdie ≥ teat+ tsleep

If the cdmline args to our philo programm do not respect this rule, it is certain that our
philos will die.

For further insights we have to look at the 2 possible cases independently: even and un-
even number of philos. The uneven case will turn out to be much more interesting....

Even number of Philos

The big question: Is Rule i already enough? Let’s have a look at the following two figures
showing the life or death of 2 philos:

1

https://www.github.com/mofrim

Figure 1: ./philo 2 120 20 80

Figure 2: ./philo 2 120 80 20

The only difference is that tsleep and teat have been switched. In fig. Everything goes fine,
but in fig. 2nd Philo dies only after one meal. This happens because he dies, while the Philo
1 is still eating. This would not have happened if

Rule ii:
tdie ≥ 2 · teat

But is this enough now?! Of course not! Take for example a session with [./philo 2 40 20
80] the condition tdie > 2 · teat is still met, but the Philos die in their sleep. So, the safe Rule for
an even number of philos can only be:

Rule I: If n ∈ 2Z
tdie >max
�

2 · teat, teat+ tsleep

�

.

Wait, what? Why max? Take again the example with

[./philo 2 120 20 80] and [./philo 2 120 80 20]

In the former the conditions are both met, tdie > 2 · teat and tdie > teat+ tsleep. In the latter
Rule ii is violated. If we did not take the max of both as our value for tdie then one will always
be violated. So, this is the only way. It follows, that even a smaller value of tdie = 101 will work
for the example [./philo 2 120 20 80].

Uneven philno

Now what’s the difference with an uneven number of philos? The fundamental difference
can be shown by the example of 3 philosophers. The same pattern will be true for all odd n .

With n = 3 we also have 3 forks on the table. As a consequence only one philo can start
eating, while the 2 others have to wait. Let’s call the philos A, B and C. So, philo A eats, B &
C wait. But then again only one of B & C can eat next! Say, that B is eating next while C is
still waiting for his 2nd fork (technically: his pthread_mutex_lock is blocking). Finally after
B has finished his meal, C will eat. But at this time the last_meal_start time of A will be
t = 0, which is the beginning of the simulation and he lived already 2 · teat without starting
another meal. And now C still has to eat! So, if now tdie ≤ 3 · teat, philo A will die during C’s
meal. Of course Rule i still must be obeyed because stuff like ./philo 5 601 200 401 will
still kill your philos. So it follows in the uneven case:

Rule II: If n ∈ 2Z+1
tdie >max
�

3 · teat, teat+ tsleep

�

.

2

I only gave the example for n = 3 but it is easy to see that with an odd philno there will always
2 philos waiting at the beginning of simulation not eating in the first round of meals. In the
2nd round of meals only one of them is able to eat because they share one fork. This leads
to the neighbor of the philo who still can’t eat in round 2, but has eaten in the 1st round, not
havening his next meal before 3 · teat after his first meal started, qed.

Syncronization

Now what if all philos grab exactly one fork at the very beginning or any later moment in the
simulation? Deadlock! Philo-mass-starving!

The answer to this problem is: Syncronization.

Even philno

Here one easy syncro is very obvious: Just let half of the philos sleep at beginning of simula-
tion for a little while, then the other half will have just enough forks to eat. Take teat/2 f.ex.,
that’s it.

Odd philno

For one philo there is not much hope, having only one fork...�
But also for odd n > 1 there is at least one major pitfall (which, in my case, only in the

bonus part happened to be more likely) and this is due to the

Fact: The POSIX standard does not guarantee that pthread_mutex_lock or sem_wait
work with the FIFO = First In First Out principle. Meaning: it is not guranteed
that the first process who called pthread_mutex_lock/sem_wait will be the first
to be unblocked (in that case increment the semaphore or get to lock the mutex)!
For deeper info see: https://github.com/torvalds/linux/.../Documentation/lock-
ing/mutex-design.rst

In fig.3 you can find a diagram showing such an event where normally it should have been
philo 1’s turn after 2 and 3 ate, but the scheduler decided differently...

Figure 3: A deadly meal...

So, what is the solution to this dilemma???

...to guarantee a fixed well chosen time to think tthink after each meal in case we have an odd
number of philos!

What is this well chosen tthink?
From fig.3 we can tell that if philo 2 would have thought a little bit longer there would

have been no conflict with philo 1. But tthink has to be a derived parameter! Meaning: we are
only alllowed to specify tdie and tsleep on the command line. So we can only set tthink from a
given set of parameters which of course still have to obey Rule II in order for our philos to be
able to survive! So if

max
�

3 · teat, teat+ tsleep

�

= 3 · teat

3

https://github.com/torvalds/linux/blob/master/Documentation/locking/mutex-design.rst
https://github.com/torvalds/linux/blob/master/Documentation/locking/mutex-design.rst

then:

tdie > 3 · teat = teat+ tsleep+ tthink ⇒ tthink = 2 · teat− tsleep

but if

max
�

3 · teat, teat+ tsleep

�

= teat+ tsleep

then we get

3 · teat < teat+ tsleep ⇒ 2 · teat− tsleep < 0,

meaning: there is no more room to think. But in this case the long sleeping times already
guarantee that there will be no fork ressource problems.

Figure 4: The solution with tthink = 2 · teat− tsleep

In fig.4 a philo dinner with well chosen tthink is shown and in fig.5 a dinner with 3 · teat <
teat+tsleep is shown (except for the numerical glitch in the first block of philo 1 ;). It is obvious
that the patterns with a syncro like this align in a way that 2 philos are always either busy
sleeping or thinking when the 3rd needs to eat again. So there is no problem!

Figure 5: Odd long sleep.

Peace .

P.s.: For the diagrams i used (a modified version of) Romain’s very nice Philosophers Visual-
izer. Thx a lot for creating this, Romain!

4

https://github.com/rom98759
https://rom98759.github.io/Philosophers-visualizer/
https://rom98759.github.io/Philosophers-visualizer/

